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Some material taken from Bill Gary’s
2009 CTEQ summer school lectures



Reminder: e+e− → hadrons

• Impulse approximation: Factorize process

I short-distance hard scattering and long-distance fragmentation

• Lowest order hard scattering process is electroweak

I Higer order QCD corrections

• Running of αs means QCD description itself factorized

I High q2 perturbative (calculable)

I Low q2 hadronization (phenomenological model)



Today’s game plan

• Continue discussion of hadronization

I Does data agree with phenomenological picture?

• Add QCD corrections to hard scattering

I Corrections to R
I Three jet production

• Explore choices of Jet-finding algorithm

• Measuring αS



Characterizing hadronization using e+e− data:
Limited Transverse Momentum

• q and q move in opposite
directions, creating a color dipole
field

• Limited pT wrt jet axis

I
√
< p2T > ∼ 350 MeV

I Well described by Gaussian

distribution

• Range of longitudinal momenta

(see next page)



Characterizing hadronization using e+e− data:
Rapidity and Longitudinal Momentum

• Define new variable: rapidity

y =
1

2
ln
E + p||

E − p||

• Phase space with limited transverse
momentum:

d3p

E
→ e−p

2
T /2σ

2
dpT

dp||

E

• But

dy =
dp||

E

(you will prove this on HW # 6)

• Rapidity is a longitudinal phase space
variable

• Particle production flat in rapidity

• ymax set by kinematic limit
(E − p||) ≥ mh

• Height of plateau independent of
√
s

I Multiplicity increase due to

change in ymax



Hadronization: Particle Multiplicity

• HW # 6 will include derivation of
< Nh >∼ ln(Ecm

mh
)

• This expression holds for Ecm
above a few GeV



Jet Structure Revisited: Reminder from Last Time

• Define Sphericity Tensor

Mab =
N∑
i

piapib

where a and b are x, y and z and the
sum over i is a sum over all the
(charged) particles in the event

• Define the 3 normalized eigenvalues:

Qk ≡ Λk/
N∑
i

p2i

where Λk are the 3 eigenvalues of the
matrix

• Principle axis n̂3 is jet direction

• Define the sphericity S

S =
3

2
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An alternative event shape variable: Thrust

• Sphericity quadratic in p

I Sensitive to hadronization

details

• Linear alternative: Thrust axis

T = max

∑
|~pi| · n̂T∑
|~pi|

• Both choices appear to track quark
direction well



QCD corrections to e+e− → hadrons
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Two-Jet Rate

Three-Jet Rate

• Two- and Three-jet rates separately diverge

• Sum of the two converge (see next page)

• Can only define sensible three-jet rate with a cutoff in 3rd jet energy



First Order QCD: Jet rates

• Using gluon mass to regularize:

2 jet : σ0(1 + αs
2π
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(see Halzen & Martin pg 244 )

• Cancellation of divergences not an accident

• Occurs throughout gauge theories (QED as well as QCD)

• Cancellation of infrared divergences described using general
theorm by Kinoshita, Lee and Nauenberg

• In practice, divergences in 2 and 3 jet rates NOT a problem
I Can only distinguish two jets if they are separated in angle and both

jets have measurable energy.



How to define a 2-jet event: Sterman-Weinberg

• Classify as a two-jet event if we can find two cones of opening angle
δ that contain all but at most a fraction ε of the total energy of the
event

I So, the classification depends on the values of δ and ε chosen

• In QCD theory, the jets are defined in terms of the partons of the
calculation.

• In experiment, defined in terms of final state particles

I Or in terms of proxies for these particles (eg energy clusters in a

calorimeter)



Calculating the 3-jet rate in region away from singularity

• Define the energy fractions of the 3 jets

xq =
2Eq√
s

; xq =
2Eq√
s

; xg =
2Eg√
s

;

• Conservation of energy: xq + xq + xg = 2

• In practice, don’t know which is the q, q, g

• Order them in momentum

dσ3 jet
dx1dx2

= σ0
2αs
3π

x21 + x22
(1− x1)(1− x2)

• Note: σ diverges if x1 → 1 or x2 → 1

I ~p3 || ~p1 ⇒ x2 → 1: Collinear divergence
I x3 → 0⇒ x1, x2 → 1: Soft Divergence



Searching for 3 jet events using the Sphericity Tensor

Q1 +Q2 +Q3 = 1

Sphericity S = 3
2
(Q1 +Q2)

Aplanarity A = 3
2
Q1

• As the energy increases, the
narrowing of the jets allows us to
look for cases of wide angle gluon
emission (3-jet events)

• QCD brem cross section diverges for

colinear gluons or when the gluon

momentum goes to zero
I But that is the case where we

can’t distinguish 2 and 3 jet
events anyway

I Total cross section is finite

(QCD corrections to R)

• Can use the sphericity tensor to
search for 3-jet events

• Similar searches using a thrust-like

variable possible: see next page



Thrust-like Energy Flow Method

• For each particle define an “energy flow vector”

~Ei = (Ei/|~pi|) pi

• Unit vector ê1 analogout to Thrust T is:

Fthrust = max

∑
i | ~Ei · ê1∑
iEi

• Orthogonal axes defined as

Fmajor = max

∑
i | ~Ei · ê2∑
iEi

ê2 ⊥ ê1

and
ê3 = ê1 × ê2

Global variables such as energy-flow and sphericity

are called “shape-variables”





Jet Finding Algorithms

• Shape variables like Thrust have advantage that they allow tests with
minimal sensitivity to hadronization

• But don’t allow us to study multijets well

• Need an algorithm to decide how many jets we have and associate

particles with the jets

I Algorithm will have some parameter to handle the infrared divergence (eg

a cut-off)

• Two basic types of algorithm:

I Geometric cluster algorithms:

• Cluster based on angular separation. Define in terms of a cone-size (eg the δ of

Sterman-Weinberg)

I Recombination cluster algorithm

• Find particles close together in a momentum-based metric and replace them with the sum

of their four-momenta

• Traditionally, e+e− experiments used recombination algorithms and

hadron colliders used geometric algoritms

I LHC has moved to recombination algorithms as well (better behavour

when comparing to theory)



What is important in a jet-finding algorithm?

• Should combine particles (or energy clusters) into jets in a way that
agrees with what we see “by eye” in straightforward cases

I Avoid pathologies (turns out this isn’t easy)

• Should be insenstive to details of the hadronization
I If a particle decays, calculation using parent and daughters should

give nearly the same answer

• Should be possible to apply same algorithm to the quarks and
gluons that are the outgoing “particles” in a QCD calculation
(before hadronization)

I Should not have divergences for colinear or soft emission: “Colinear

and Infra-red safe”



The Basics of Recombination Cluster Algorithms

• Can start with any objects where we can define a 4-momentum, eg
I Particles
I Energy clusters

Label them i = 1 . . . n

• Loop over all these objects, calculating the distance between them
according to a metric

• Combine the two that are closest together in that metric, if the
distance is below a fixed cut

• A common metric: yij = M2
ij/s with s = E2

CM

• What do we mean by “combining” the two? Different schemes:
I E-scheme: Add 4-momenta pk = pi + pj
I EO-scheme: require jets to be massless

Ek = Ei + Ej

~pk =
~pi + ~pj
|~pi + ~pj |

Ek

• Iterate until all pairs satisfy yij > ycut







Note for future lectures

• The kT algorithm works well in e+e− and is what was used for many of
the results shown here

• Serious problems in hadron collisions due to sweeping up of soft particles
from the proton remnants

• Turns out that changing the metric from

M2
ij = min

(
E2
i , E

2
j

) Rij
D

to

Dij = min
(
E−2
i , E−2

j

) Rij
D

where Rij is essentially θij and D is essentially δ

• “anti-kT algorithm” does wonders (more when we discuss jets at pp
colliders)

• While kT starts by combining softest particles, anti-kT starts with the

hardest ones

I Less sensitive to pathologies from junk







Measuring αS: Overview

• Hadronization is always an issue in precision QCD
measurements

• Best to cross-check results using as many different processes
as possible

• In general, the more inclusive a measurement, the smaller the
uncertainties

• Today, will talk about αS determinations from LEP

• Last week, we saw that Deep Inelastic Scattering provides an
alternative



Inclusive Measurements

• Based on event counting (independent of topology)
I R` = Γ(Z → hadrons)/Γ(Z → µ+µ−)
I σ0

had (peak hadronic cross section)
I σ0

lep (peak leptonic cross section)
I Rτ = Γ(τ → hadrons)/Γ(τ → µνµντ )

• Recent reanalysis of these data gives

αS(M2
Z) = 0.1196± 0.0030

• Dominated by experimental uncertainty of 0.0028



αS from Event Shape Variables

• Larger systematic uncertainties due to hadronization

• Improvements in theory, but precision still theory-limited

• Some controversy about the quoted uncertainties


